Three-Nucleon Forces for Medium-Mass Neutron-Rich Nuclei

Jason D. Holt

OAK RIDGE NATIONAL LABORATORY

10th International Spring Seminar on Nuclear Physics May 22, 2010

Outline

Microscopic Theory for Valence Shell Effective NN Interactions

- Many-body perturbation theory: methods and interactions
- Deficiencies: revealed in monopole interaction, oxygen properties

- Inclusion in valence-shell interactions: 1- and 2-body parts

Impact on Nuclear Structure

- 1-body 3N: contribution to microscopic sd-shell SPE
 - Parameter-free shell model calculations: impact on spectra

Many-body Problem for Finite Nuclei

- Various methods to solve many-body problem: Coupled Cluster, NCSM, Inmedium SRG – we use **many-body perturbation theory (MBPT)**

- Solve the many-body Schrödinger equation for nuclear systems: $H\psi$ = $E\psi$

- Impossible to solve in heavy systems in complete Hilbert space

- Consider problem in truncated (model) space defined by projection operator *P*: $PH_{eff}P\psi = EP\psi; \quad H_{eff} = H_0 + V_{eff}$ and *V_{eff}* acts in the model space given by *P*

Folded-diagrams: method to construct effective interaction perturbatively

Monopole Part of Interaction

- **Microscopic MBPT** typically works for few particles/holes away from closed shell: deteriorates beyond this
- Deficiencies in microscopic interactions can be improved by adjusting a particular set of two-body matrix elements (TBME):

Angular average of interaction Determines interaction of orbit *a* with *b*: *evolution of orbitals*

$$V_{ab}^{T} = \frac{\sum_{J} (2J+1) V_{abab}^{JT} [1 - (-1)^{J+T} \delta_{ab}]}{\sum_{J} (2J+1) [1 - (-1)^{J+T} \delta_{ab}]}$$

Phenomenological shell model interactions typically start from MBPT results then exploit importance of monopoles:

sd-shell: 63 TBME - USD (1984), USDa, USDb (2006)

- global fit of single particle energies (SPEs) and two-body matrix elements; monopoles most important

pf-shell: 195 TBME

- GXPF1 (2004): quasi-global fit; monopoles most important
- KB3G(2001): modification of monopole part only

-- Proposed by A. Zuker (2003)

Chiral Effective Field Theory

Nucleons interact via π exchange and contact interactions Explains hierarchy: $V_{NN} > V_{3N} > \dots$ Short-range couplings fit to experiment Systematic way to include 3NF Only two new couplings at N^2LO : **c terms**: already constrained by NN, π N data $c_1 = -0.9^{+0.2}_{-0.5}, c_3 = -4.7^{+1.2}_{-1.0}$ $c_4 = 3.5^{+0.5}_{-0.2}$

No new couplings at N³LO N⁴LO

Chiral 2N: large cutoffs not suitable for MBPT – need to renormalize... Evolve to lower cutoff using **RG methods** (smooth regulator):

3N Forces for Valence-Shell Theories

 $V_{low k}(\Lambda) + N^2 LO Chiral V_{3N}(\Lambda)$

 $D(\Lambda)$, $E(\Lambda)$ couplings fit in light systems

<u>Approach</u>: inspired by benchmark **Coupled Cluster** results for ⁴He with 3N

0- 1- and 2-body parts (summed over occupied states) of 3NF dominate:
Neglect residual 3NF
Generate effective two-body force from 3N by similar sum (as in nuclear matter)

$$\langle ab | V_{3N,eff} | a'b' \rangle = \sum_{\alpha = core} \langle ab\alpha | V_{3N} | a'b'\alpha \rangle$$

3N Forces for Valence-Shell Theories

 $V_{low k}(\Lambda) + N^2 LO Chiral V_{3N}(\Lambda)$

 $D(\Lambda)$, $E(\Lambda)$ couplings fit in light systems

<u>Approach</u>: inspired by benchmark **Coupled Cluster** results for ⁴He with 3N

0-1- and 2-body parts (summed over occupied states) of 3NF dominate: **Neglect residual 3NF** Generate effective two-body force from 3N by similar sum (as in nuclear matter) $\langle ab | V_{3N,eff} | a'b' \rangle = \sum \langle ab\alpha | V_{3N} | a'b'\alpha \rangle$ Effective one-body contribution: $\langle a | V_{3N,\text{eff}} | a' \rangle = \frac{1}{2} \sum_{\alpha\beta=core} \langle a\alpha\beta | V_{3N} | a'\alpha\beta \rangle$

• 3N forces tractable in shell model

Calculation Details

Focus on T=1 monopoles and systems in the following details:

- NN matrix elements derived from:
 - Chiral N³LO (Machleidt, 500 MeV) using smooth-regulator $V_{{\rm low}\,k}$ with range of cutoffs
 - 3rd-order in MBPT
 - $20\hbar\omega$ intermediate state configurations (converged)

3N forces: calculate monopole components from:

A) Chiral N²LO fit to above $V_{low k}$ with $\Lambda = 2.0$ fm⁻¹

B) One-Delta excitation from N²LO: specific choice of *c*-terms Converged in 3NF partial waves up to $J \le \frac{7}{2}$ Included to first order in perturbation theory

- First calculations to show missing monopole strength due to neglected 3N
- Restores monopole hierarchy $d_{5/2}$ - $d_{5/2}$ vs. $d_{5/2}$ - $d_{3/2}$
- Future: Improved treatment of high-lying orbits treat as holes in 40 Ca core

One-body 3N: Calculation of SPEs

So far phenomenological SPEs: NN-only microscopic SPE yield "poor" results

- sd-shell: Self-consistent calculation in MBPT $20\hbar\omega$ (converged) to 3^{rd} -order
- NN-only insufficient: consistent with similar studies (Coraggio, et. al, 2007)

Orbit	"Exp"	USDb	NN
<i>d</i> _{5/2}	-4.14	-3.93	-5.43
s _{1/2}	-3.27	-3.21	-5.32
d _{3/2}	0.944	2.11	-0.97

One-body 3N: Calculation of SPEs So far phenomenological SPEs: NN-only microscopic SPE yield "poor" results

- sd-shell: Self-consistent calculation in MBPT $20\hbar\omega$ (converged) to 3rd-order
- NN-only insufficient: consistent with similar studies (Coraggio, et. al, 2007)

Orbit	"Exp"	USDb	NN	3N	NN+3N
<i>d</i> _{5/2}	-4.14	-3.93	-5.43	1.36	-4.07
<i>s</i> _{1/2}	-3.27	-3.21	-5.32	3.39	-1.93
<i>d</i> _{3/2}	0.944	2.11	-0.97	3.06	2.09

Consistent with CC hierarchy: 1-body 3N > 2-body 3N ~ order of magnitude
Microscopic SPEs: Reasonable agreement with USD, experimental

- Using microscopic 3N monopoles, NN+3N SPEs: beneficial for spectrum
 - Correct ordering, improved spacing need to include full 3N multipoles

Ground State Energies in Ca Isotopes

Include many-body correlations by diagonalization in model space Perform shell model calculations for Ca isotopes using NN + 3N full multipoles Calculate binding energies for isotope chain

NN-only comes to overbind Ca isotopes beyond $\sim {}^{46}Ca$

3N forces correct overbinding: good experimental agreement Correction from 3N Δ consistent between methods

Shell Gap in ⁴⁸Ca

Shell gap in ⁴⁸Ca well-reproduced with phenomenological interactions

Calculate first 2⁺ excited states in calcium isotopes

3N forces: improvement of 48 Ca 2⁺ energy ~1 MeV

Cures another NN-only failing: can reproduce ⁴⁸Ca shell closure Strongly dependent on SPE chosen - Remove ambiguity: calculate microscopically with 3N, as in *sd*-shell

Outlook

- Exploring frontiers of nuclear structure of medium-mass nuclei with 3N forces
- **2-body 3NF**: contribution to TBME monopoles
 - **Repulsive shift** seen in T=1 monopoles due to 3N forces in *sd* and *pf*-shells
- First shell model results in *sd*-, *pf*-shells using chiral 3N forces:
 - Leads to correct predicted binding energies and evolution of shell structure
 - Cures NN-only failings: Dripline, spectra in oxygen, shell gap in ⁴⁸Ca
- 1-body 3NF: Microscopic SPEs in *sd*-shell parameter-free shell model calculations

• In progress:

• Microscopic SPEs in *pf*-shell

• Near Future:

- T=0: need NN-3N to 2nd order
- Ni, Sn Isotopes
- Continuum effects near driplines with K. Tsukiyama (Tokyo)

Thanks to Collaborators: T. Otsuka , A. Schwenk, T. Suzuki

Travel support from UNEDF

Calcium Effective Single Particle Energies

Calculate SPE evolution with 3N forces

With 3N forces:

- Trend across: improve binding energies
- Increased gap at ⁴⁸Ca: enhancement of closed-shell features
- N=34 shell gap: robust prediction of shell gap at N=34

One-body 3N: Calculation of SPEs

So far phenomenological SPEs: NN-only microscopic SPE yield "poor" results

- *sd*-shell: Self-consistent calculation in MBPT $18\hbar\omega$ to 3^{rd} -order (converged)
- NN-only insufficient: consistent with similar studies (Coraggio, et. al, 2007)

Orbit	"Exp"	GXPF1	NN
<i>Of</i> _{7/2}	-8.36	-8.62	-10.77
1 _{P3/2}	-6.26	-5.68	-10.83
1p _{1/2}	-4.46	-4.14	-8.99
$Of_{5/2}$	-1.86	-1.38	-6.47

One-body 3N: Calculation of SPEs

So far phenomenological SPEs: NN-only microscopic SPE yield "poor" results

- *sd*-shell: Self-consistent calculation in MBPT $18\hbar\omega$ to 3^{rd} -order (converged)
- NN-only insufficient: consistent with similar studies (Coraggio, et. al, 2007)

Orbit	"Exp"	GXPF1	NN	3N	NN+3N
<i>Of</i> _{7/2}	-8.36	-8.62	-10.77	2.42	-8.35
1p _{3/2}	-6.26	-5.68	-10.83	5.23	-5.58
1p _{1/2}	-4.46	-4.14	-8.99	6.17	-2.83
$Of_{5/2}$	-1.86	-1.38	-6.47	4.74	-1.73

Consistent with coupled cluster: 1-body 3N > 2-body 3N ~ order of magnitude
 Microscopic SPEs: Reasonable agreement with USD, experimental

Calculated Oxygen Binding Energies

Introduce many-body correlations by diagonalization in model space First shell-model calculations using NN+3N monopoles: predict dripline in O Calculate GS energies (relative to ¹⁶O) with SDPF-M single particle energies

Details of Calculation

Assume degenerate model space

Intermediate states excitations: 16hw

Neglect 3-body and higher Q-box

FD iterative scheme: converged ~10 iterations

3rd-order in Perturbation Theory

Effective Interaction

Effective interaction given by infinite series of "folded" diagrams:

$$V_{\text{eff}} = \widehat{Q} - \widehat{Q}' \int \widehat{Q} + \widehat{Q}' \int \widehat{Q} \int \widehat{Q} - \widehat{Q}' \int \widehat{Q} \int \widehat{Q} \int \widehat{Q} + \dots$$

 $\int =$ generalized folding operator – removes divergences due to degenerate model space

Several ways to solve the infinite series

Assuming degenerate model space $H_0 P = \omega P$, can obtain $V_{e\!f\!f}$ from Lee-Suzuki iterative scheme:

$$V_{eff}^{(n)} = \left(1 - Q_1 - \sum_{m=2}^{n-1} \hat{Q}_m \prod_{k=n-m+1}^{n-1} V_{eff}^{(k)}\right)^{-1} \hat{Q}(\omega_0) \qquad \hat{Q}_m = \frac{1}{m!} \frac{d^m \hat{Q}(\omega)}{d\omega^m}$$

Need to determine 1- and 2-body *Q*-box and its derivatives

Cutoff Dependence of Monopoles

Use cutoff dependence of $V_{low k}(\Lambda)$ to probe effects of 3N force:

T=1: cutoff-independent monopoles

- Indicates c terms may dominate (repulsive contribution in nuclear matter)
- T=0: large cutoff dependence
- Expect attraction from 2nd
 order NN-3N

- Not enough to calculate effects to first order only for T=0
- Similar trends seen in sd-shell

Cutoff Dependence of Monopoles

Use cutoff dependence of $V_{\log k}(\Lambda)$ to probe effects of 3N force:

- T=1: cutoff-independent monopoles
 → Indicates c terms may dominate (repulsive contribution in nuclear matter)
 T=0: large cutoff dependence
 → Expect attraction from 2nd
- Expect attraction from 2nd
 order NN-3N

Similar trends in sd-shell

Microscopic Approach: Chiral EFT

Examine low-energy chiral properties of QCD using EFT

- In most nuclei $Q \sim m_{\pi}$, so π exchange must be included
- Nucleons and pions explicit degrees of freedom
- \bullet Nucleons interact via π exchange and contact interactions
- Theory can be organized in powers of $\left(\frac{Q}{\Lambda_{\chi}}\right)$, valid for low-mom.
- Irreducible time-ordered diagram has order: $\left(\frac{Q}{\Lambda_{\gamma}}\right)^{\nu}$, $\Lambda_{\chi} \approx 700 \text{ MeV}$

$$v = -2 + 2N + 2(L - C) + \sum V_i \Delta_i$$

 $\Delta_i = d_i + \frac{1}{2}n_i - 2$ "Chiral dimension" of vertex

Intermediate Δ -Excitations • Importance of Δ -isobar is well known: • Small excitation energy: $\Delta m = 293 \text{ MeV}$ • Strong coupling to πN system Can be included explicitly in chiral EFT Leading contributions enter at NLO, 3N at N²LO • 2π -exchange diagram has structure analogous to corresponding chiral EFT diagram with: $c_1 = 0, c_3 = -2c_4 = \frac{h_A^2}{9\Delta m}; h_A = \frac{3g_A}{\sqrt{2}}$

Phenomenological vs. Microscopic

Compare monopoles from:

- *Microscopic* G-matrix,
 Kuo-Brown interactions
- Phenomenological GXPF1,
 KB3G interactions.
 Clear shifts for *low-lying orbitals*:
 - -T=1 repulsive shift
 - T=0 attractive shift

