
Paths to understanding nuclear structure 

Observe the phenomena 

Develop empirical formulae 

Develop phenomenological models 

Give models a microscopic 
interpretation 

Express as submodels of the shell 
model 

Define shell model coupling 
schemes and effective interactions 

Make observations on many nuclei. 
Plot results in many ways. 
Observe patterns. 

See if the models support or conflict 
with the many-nucleon shell model 

Learn what the phenomena have 
to say about the many-nucleon 
shell model? 



The subject of this talk 

What does the shell model 
have to say about deformation 

and rotations? 

What do deformations and 
rotations have to say about the 

shell model? 

Collective phenomena have been well studied and explained in 
terms of the Bohr model and more sophisticated collective models. 

In this talk, I discuss their implication for a theory of effective 
interactions in deformed nuclei. 



The Bohr model 

 R(θ,ϕ ) = R0[1+α
*
νY2ν (θ,ϕ )+]

is a liquid drop model with a shape defined by its surface.  

It has 5 quadrupole shape coordinates 

and a variety of Hamiltonians of the form 

 

Ĥ = 1
2B

π̂ ν

ν
∑ π̂ +V (α )

π̂ ν = −i ∂
∂αν
, π̂ν = −i ∂

∂α*ν

It also has very rich geometric and algebraic structures. 



 
Ψλµ;vLM = 1

β 2 Rµ
λ (β)YvLM (γ ,Ω)

Geometric structure 

Algebraic structure 

 

SU(1,1) × SO(5) ⊃ SO(3)
Rµ

λ (β) × YvLM (γ ,Ω)

From these structures we derive basis wave functions as products 
of radial wave functions and SO(5) spherical harmonics.  We also 

obtain SO(5) Clebsch-Gordan coefficients,  and matrix elements of 
all model observables of interest. 

 R+ × S4

The configuration space is 
a product manifold 



Successes and limitations of the Bohr model 

   Successes 
  The Bohr model provides a qualitative description of nuclear rotational bands. 
  It provides the language for the description of nuclear rotations and vibrations. 
  It has spawned many more detailed and more successful collective models. 

   Limitations 
  It does not explain the large variety of rotational bands for which extra intrinsic 

degrees of freedom would appear to be required. 
  Observed inertial parameters do not have the irrotational-flow values of a 

quantum fluid 



The many-nucleon collective model 
  The fundamental defect of the Bohr model is that its shape  coordinates do not 

have a microscopic interpretation 

  This makes a huge difference; e.g.  its quantisation is given by 

 and new commutation relations are obtained 

 

replace with quadrupole moments   Qij = xni xnj
n=1

A

∑

corresponding velocities are then  Qij = xni xnj + xni xnj( )
n=1

A

∑

 
Q̂ij , P̂kl⎡⎣ ⎤⎦ = i(δ ilQ̂kj +)

Q̂ijΨ(x)= xni
n=1

A

∑ xnjΨ(x), P̂ij Ψ(x) = xni p̂nj + p̂ni xnj( )
n=1

A

∑ Ψ(x)

where p̂nj = −∂ / ∂xnj

 Thus, we define P̂ij = p̂ni xnj + xni p̂nj( )
n=1

A

∑

  L = 0, 1, 2, 3,

The new Lie algebra has irreps with different vorticities 



Vibrations 

Rigid rotations 

Vortex rotations 

Irrotational-flow 
rotations 



Embedding the microscopic collective model 
in the shell model 

      We next want to construct representations on subspaces of the shell model. 

   This becomes easy if the model is augmented to include the moments of 
momentum in its Lie algebra 

   The augmented microscopic collective model is then the symplectic model with 
Lie algebra 

      This Lie algebra contains the  many-nucleon kinetic energy, the spherical and 
deformed harmonic oscillators, and much else 

  Its dynamical group contains the SU(3) group as a subgroup 

Kij = pni
n=1

A

∑ pnj

Qij ,Pij ,Kij{ }

H =
1
2M

p2ni
ni
∑ + 1

2
Mω 2 x2ni

ni
∑

Sp(3,R) ⊃U(3) ⊃U(1)× SU(3) ⊃ SO(3)

T = 1
2m pni2

ni
∑



             Irreps of   

   An irrep can be constructed starting from any lowest-grade SU(3) irrep 
and applying monopole/quadrupole raising operators. 

   Zero-phonon giant monopole/quadrupole states are said to be lowest-
grade states.  Thus, we can start with a lowest-grade SU(3) irrep and 
build an Sp(3,R) irrep upon it by repeated application to it of the giant-
resonance raising operators. 

Sp(3,R) ⊃ SU(3)

Q̂ij = Q̂ij
(0) + Q̂ij

(+2) + Q̂ij
(−2)

Q̂ij
(0) Elliott's quadrupole operators

Q̂ij
(+2) one-phonon giant resonance raising operators

Q̂ij
(−2) one-phonon giant resonance lowering operators

There are three kinds of Sp(3,R) irrep;  
                     spherical,    axially symmetric,     and triaxial. 



Basis states for a spherical representation 

There is a small mixing of N=0 and N>0 irreps giving rise 
to vibrational ground state correlations. 

N (λ,µ) = N0 (0,0) irrep

N0

N0+4

N0+2

(0,0)

(2,0)

(2,0)x(2,0)

L=0

L=0, 2

L=03, 22, 4

 Q Q(+2)(+2)

 Q Q(+2)(+2)

Lowest-grade 
SU(3) irrep 



Basis states for an axially symmetric 
representation 

There is now a strong mixing of N=0 and N>0 irreps giving 
rise to a renormalised ground state rotational band. 

N (λ,µ) = N0 (λ,0) or N0 (0,µ) irrep

Lowest-grade 
SU(3) irrep 

N0

N0+2

(λ,0)

(λ,0)x(2,0)

L=0, 2, 4, ...

 Q Q(+2)(+2)



Basis states for a  triaxial representation 

There is now a strong mixing of N=0 and N>0 irreps giving 
rise to  renormalised ground state rotational bands. 

N (λ,µ) = N0 (λ,µ) irrep

N0

N0+2

(λ,µ)

(λ,µ)x(2,0)

 Q Q(+2)(+2)

K=0 K=2 K=4

Lowest-grade 
SU(3) irrep 



Shell-model description of the low-energy 
states of rotational nuclei 

   The shell-model space is a direct sum of irreducible representations of 

   Ideally we would diagonalise a Hamiltonian with realistic interactions in 
a space of relevant  Sp(3,R) x U(4) representations. 

   Challenges: 
  Diagonalisation in a single Sp(3,R) irrep is difficult --  but possible. 
  We need to determine a finite number of most appropriate representations. 
  A diagonalisation in such a space requires a new theory of effective 

interactions 

Sp(3,R) × U(4) ⊃ U(3) × SU(2)S × SU(2)T
Wigner 

supermultiplet 
group 

space spin isospin 



First thoughts on an effective shell model for 
deformed nuclei 

   1.  Select an appropriate subset of Sp(3,R) representations; 
   each irrep is characterised by a lowest-grade U(3) subspace with the same quantum 

numbers  (see next slide) 

   2.  Define the active model P space as a direct sum of these lowest-grade 
        subspaces 

PHYSICAL SPACE
P SPACE

P SPACE = P SPACE = Σ LOWEST-GRADE SU(3) SPACES LOWEST-GRADE SU(3) SPACES

P SPACE

Q SPACE Q SPACEQ SPACEQ SPACE

PROJECTION
 OPERATOR

Projection from the physical 
space to the P space is easy 
and preserves the quantum 

numbers 

(λµ) L S T J π



Selection of relevant Sp(3,R) subspaces 
The experimental choice: 
  The SU(3) model gives a map   

  The Sp(3.R) model (with self-consistency) gives a map 

  Conversely,   experimental observations gives a map 

 Example: 

  consistent with the Nilsson model for the observed deformation which also 
gives 

     where N0 is the minimum spherical harmonic oscillator value 

  It might be sufficient to choose a  small number Sp(3,R) irrep corresponding 
to the number of rotational bands to be described. 

(λµ) → E2 rates and quadrupole moments

(λµ) →  eeff × SU(3) E2 rates and quadrupole moments

E2 rates and quadrupole moments  → (λµ)

168 Er          λ ~ 88, µ ~ 11

N = N0 +16

Jarrio, et al, Nucl. Phys. A528 (1991) 409 



Ground-state 
rotational 
band of 166Er 

Three fits to the same data: 
(i)  With a single Sp(3,R) 
irrep; 
(ii)  A phenomenological 
rigid rotor model; 
(iii)  A single SU(3) irrep. 

Note that in the 
microscopic Sp(3,R) model 

there is no need for an 
effective charge; observed 

E2 transition rates and 
moments of inertia are 

easily obtained 

Bahri & Rowe 
Nucl. Phys. A662, 125 (2000). 0
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Shape coexistence is seen to occur in most (all?) nuclei 
K.Heyde & J. Wood, Rev. Mod. Phys. (in press) 



Conclusion 

   The path 

   leads to identification of the relevant truncated subspaces and coupling 
schemes for shell-model calculations;  

   e.g. 

   Spectra of single-closed shell nuclei indicate 
                  pair coupling in a spherical harmonic oscillator shell-model 

basis 
   whereas, deformation and rotational bands indicate 

   collective models and an Sp(3,R) > U(3) coupling scheme. 

Phenomena → model→ submodel of the SM

The shell model theory of effective interactions needs major 
revision to account for nuclear deformation and rotation. 





 
Ψλµ;vLM = 1

β 2 Rµ
λ (β)YvLM (γ ,Ω)

 

αν = βY12ν (γ ,Ω)
Y12ν (γ ,Ω)∝ cosγ D0ν

2 (Ω)

+ 1
2
sinγ D2ν

2 (Ω)+D−2,ν
2 (Ω)⎡⎣ ⎤⎦

Geometric structure 

Algebraic structure 

  

R+ × S4

SU(1,1) × SO(5) ⊃ SO(3)
Rµ

λ (β) × YvLM (γ ,Ω)

From these structures we derive the basis wave functions for the  
radial wave functions and SO(5) spherical harmonics and matrix 
elements of all model observables of interest, including Clebsch-
Gordan coefficients 



The shell-model approach 

   The shell model is based on the premise that there is an ordered 
sequence of “harmonic oscillator” subspaces 

   such that the corresponding expansion of low-lying states is a  
   convergent sequence. 

  H = H1 ⊕ H2 ⊕ H3 ⊕ ...

There are problems! 

 Ψ = α1Ψ1 + α2Ψ2 + α3Ψ3 + ...

We need subspaces that factor into product of relative and centre-
of-mass spaces and carry irreps of needed symmetry groups. 



A schematic strategy for deriving effective 
interactions 

  Choose a suitable harmonic-oscillator basis of single-particle states for the 
nucleus of interest. 

  Solve the two-nucleon problem in this potential with realistic interactions and 
derive an effective two-nucleon on a large harmonic-oscillator subspace. 

  Solve the three-nucleon problem on this subspace with the effective two-
nucleon interactions and derive effective 2- and 3-nucleon  effective 
interactions on a smaller harmonic-oscillator subspace. 

  Continue this process for as far as needed.   

If the computational facilities would enable such an algorithm to be completed 
without undue truncation at any step and if it were to converge rapidly in the 

sense that 4-nucleon and more many-nucleon interactions were small (or could 
be replaced by density-dependent 2-nucleon interactions) the strategy would 

have proved to be successful.   

However, the result (even if it could be achieved) would 
probably be slowly convergent and (unnecessarily) 

complicated. 



 Shell-model coupling schemes 
 We need an optimally-ordered sequence of shell-model subspaces 

   The subspaces should carry representations of suitable spectrum 
generating algebras to make the calculations feasible. 

   choose a suitable symmetry-based coupling scheme to give an ordering 

 Operational sequence:   
             Data   model interpretation   algebraic model   
                                             shell model coupling scheme 

  H = H1 ⊕ H2 ⊕ H3 ⊕ ...

There may be different optimal coupling schemes for different 
classes of nuclei: closed-shell, singly closed-shell, and doubly 

closed-shell nuclei.   



Convergence in a harmonic-oscillator basis 

  For deformed nuclei, convergence of low-lying states of nuclei in a basis 
ordered by harmonic oscillator energies is very slow. 

   

The dimensions of harmonic-
oscillator shells increase almost 
exponentially with increasing 
oscillator quanta 

Perturbation theory starting from the 0hw space is   
unlikely to work. So what do we do? 

J.P. Draayer, K.J. Weeks and G. Rosensteel, 
Nucl. Phys. A413  (1984) 215 

G. Rosensteel and D.J. Rowe,  
Ann. Phys. 126  (1980) 343 

20Ne 



Coupling schemes suggested by models 

   The harmonic oscillator shell model: 
  Standard jj coupling: ordering of shells by number of quanta and spin-orbit 

interaction 

  J=0 pair-coupling model 

  L=0 pair-coupling model 

  Collective model coupling scheme 

U(1)×U(2 j +1)×SUT (2) ⊃SUJ (2)

U(1)×U(2 j +1)×SUT (2) ⊃Sp(2 j +1) ⊃SUJ (2)

U(4)×U(2l +1) ⊃SUS (2)×SUT (2) ×O(2l +1) ⊃SUJ (2)

 U(4)×Sp(3,R) ⊃SUS (2)×SUT (2) ×U(3) ⊃SUJ (2)

seniority 

LSU-IOWA 



The shell-model coupling scheme suggested by the 
Bohr collective model 

   The collective model: 

R(ϑ,ϕ ) = R0 1+ αλνYλν
* (ϑ,ϕ )

λν
∑⎡

⎣
⎢

⎤

⎦
⎥

coordinates αλµ{ }  given by surface shape parameter

 
quantum observables α̂λν ,π̂

λµ{ }  with π̂ λµ = −i ∂
∂αλν

 
classical variables αλν , αλµ{ }  

Rotations and vibrations 
of a liquid drop 



Dynamical groups of an LST coupling scheme 

U(4) × Sp(3,R) × O(A)

SU(2)S × SU(2)T
CM(3) HW(6)[ ]U(3)

Bohrmodel
+vorticity U(3)

R5⎡
⎣

⎤
⎦SO(3)L

SO(3)L

O(A−1)

SA

In the symplectic model 
we can diagonalize a 

model Hamiltonian in a 
U(3) shell-model  basis 

The symplectic shell model has a very rich algebraic structure 

rigid-rotor 
  model

SU(2)J



How do you order symplectic irreps? 

 0ω  1ω  2ω

(i)   by preliminary calculations within each irrep;  
(ii)   by phenomenological calculations to fit the data,  
(iii)   by preliminary mean-field calculations,  or … 



Potential advantages of the 
U(4) x Sp(3,R) > U(3) coupling scheme 

   It is ‘easy’ to project a large Sp(3,R)-coupled basis for a large space to  a 
small U(3)-coupled effective shell-model and to map an algebraic sp(3,R) 
Hamiltonian to an effective U(3) Hamiltonian. 

Each Sp(3,R) irrep is simply 
replaced by its lowest-
weight U(3) subspace 

What about other SM 
operators and interactions? 



Sp(3,R) model wave 
functions for 166Er 
expanded on an 
SU(3) basis 

Bahri & Rowe 
Nucl. Phys. A662, 125 (2000). 

 Because of the remarkable 
coherence (almost L 
independent coefs.), the 
huge linear combinations of 
U(3) irreps are well 
represented by an average 
(even lowest-weight)  
 effective irrep  
(quasi-dynamical symmetry). 


