
Nuclear Mean Field Hamiltonians and Their
Spectroscopic Predictive Power

Bart lomiej Szpak

Institute of Nuclear Physics, PAN
Kraków, Poland

25th of May, 2010

In collaboration with:
J. Dudek, K. Rybak, M.-G. Porquet, H. Molique, B. Fornal

Bart lomiej Szpak 10th International Spring Seminar on Nuclear Physics



The aims of a project

Fields of applied mathematics such as the methods of statistical inference
and inverse problem theory provide powerful and valuable tools for
estimating the predictive power of mathematical models. They usefulness
is not fully explored in nuclear structure models.

We wish to use these methods to:

Examine their possible applications in empirical nuclear structure
models, especially insabilities of the modelling

Obtain reliable estimates and confidence intervals for model
parameters and observables

Improve the predictive power of models rather then getting better
numerical description of available data
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The basics of least-squares methods (1)

Let us model a set of experimental data points yi using function f (xi , ~β).
The aim of inference is to determine the n parameters βk from a set of m
measurments yi taking into account the uncertainties in parameters.

Assuming that the error in each measurment is normally distributed
with zero mean and variance σi , and that the errors are statistically
independent, the likelihood p(~y |~β) is:

p(~y |~β) ∝
∏

i

exp

[
− (yi − f (xi , ~β))2

σ2
i

]
and

χ2 = −2log
[
p(~y |~β)

]
=
∑

i

(yi − f (xi , ~β))2

σ2
i

We define the Jacobian matrix: Jij = ∂yi

∂βj
. The normal equation for β reads:

~β = (JTJ)−1JT~y
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The basics of least-squares methods (2)
The unbiased estimator for rms deviation of residuals ri = yi − f (xi , ~̂β) is:

∆2
rms = σ̂2 =

χ2

m− n

The distribution of ∆2
rms follows a χ2-square distribution

with ν = m− n degrees of freedom.

A number of properties can be estimated with the knowledge of a Jacobian:

The variance-covariance matrix for parameters ~β (assuming equal σi ):

Mβ = ∆2
rms(JTJ)−1

Correlation matrix:

ρij =
Mβ

ijq
Mβ

ii Mβ
jj

Confidence intervals (using Student t-distribution):

βi ∈ (β̂i − tα/2,ν

q
Mβ

ii , β̂i + tα/2,ν

q
Mβ

ii )
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The illustrative toy model

As an illustrative model we are using a classical Woods-Saxon potential
which parameters are fitted to a set of neutron single particle levels in
208Pb. For simplicity of presentation I assume equal weights for all
experimental levels. We set aso

0 = 0.6 fm.

H = T + Vc + Vso

Vc =
V0

1 + exp[(r − R0)/a0]

Vso =
V so

0

r

d

dr

{
V so

0

1 + exp[(r − Rso
0 )/aso

0 ]

}
We have:

~β = [V0, r0, a0,V
so
0 , r so

0 ]

xi = {1h9/2, 2f7/2, 1i13/2, 3p3/2, 2f5/2, 3p1/2, 2g9/2,

1i11/2, 1j15/2, 3d5/2, 4s1/2, 2g7/2, 3d3/2}
yi = {−10.784,−10.300,−9.800,−8.270,−7.940,−7.370,

−3.940,−3.160,−2.517,−2.370,−1.900,−1.440,−1.400}
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How much can we get using classical methods ?

As the model is non-linear in its parameters we start the minimization with
randomly selected ~β and repeat the procedure many times to enhace the
chance for obtaining all minima.

The two solutions are found (called non-compact and compact):

V0 r0 a0 V so
0 r so

0 ∆rms

-42.025 1.320 0.694 24.781 1.231 0.349

V0 r0 a0 V so
0 r so

0 ∆rms

-41.653 1.328 0.670 24.007 0.924 0.425

This is where many of analysis finish.
How much can we deduce from this pieces of information ?
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Lack of information

We can conclude that:

We fitted the parameters to 13 neutron levels in 208Pb

We do know nothing about the predictive power of our model.

The parameters of central potential are “stable”

as they are almost the same in two resulting parameterizations.

The spin-orbit radius parameter can take two distinct values.

The model with smaller ∆rms is better so we are tempted to choose

the first set of parameters.

The performance of the model is quite good.

The average disagreement between the theory

and experiment is around 350keV.
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A chance for being too lucky

Suppose we use a set of 12 experimental levels out of 13 to perform the
fit. We can get the set of 13 different values for ∆rms :

∆rms ∈ {0.191, 0.289, 0.338, 0.342, 0.351, 0.351, 0.351,

0.359, 0.363, 0.363, 0.365, 0.373, 0.423}

These are the random samples from a

√
χ2(x ;ν)

ν distribution.

Without the prior knowledge of physi-
cal/expected value of ∆rms we shall always
remember that ∆2

rms follows a χ2(x ; ν)/ν di-
stribution. This means that ∆2

rms is a poor
estimator of σ̂2 - it can be biased and have
large variance. Moreover there always exist
a possibility of overfit.This problem is cru-
cial for the reliable estimation of confidence
intervals as Mβ = ∆2

rms(JTJ)−1.
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A gain of information with variance-covariance matrix

The variance-covariance matrix provides a basic information about the
properties of a fit. Having this information we are able to calculate the
standard errors, confidence intervals and correlation matrix for the
parameters.

property V0 r0 a0 V so
0 r so

0

mean -42.025 1.320 0.694 24.781 1.231
std. error 1.217 0.023 0.031 2.639 0.050

conf. interval 2.264 0.043 0.058 4.907 0.093

Estimate of a correlation matrix:

V0 r0 a0 V so
0 r so

0

V0 1.0000 0.9900 0.0096 0.0482 0.4788
r0 1.0000 0.0923 0.0632 0.4935
a0 1.0000 0.3393 0.3407

V so
0 1.0000 0.7835

r so
0 1.0000
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Making predictions with classical analysis

The information about the correlation among the parameters is essential
for estimation of the predictive power of a model. With it, assuming the
output of a model are linearly related to the perturbations in the
input, the variance-covariance matrix for the output is given by:

My = STMβS

where Sij = ∂yi
∂βj

.

Alternatively, one can use Monte-Carlo methods to sample the parameter
space. As we will see later, the full information about the correlation
matrix is necessary to obtain reliable predictions.
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Part 2

A deeper inspection of model’s statistical
properties using Monte-Carlo analysis
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Algorithm of calculations

We can use a Monte-Carlo method to verify how the random noise in the
input data influences the obtained parameters of a model.

The procedure of calculations is following:

1 Fit the experimental data within the examined model.

2 Use the resampling techniques for inspection.

3 Add a Gaussian random noise with σ = ∆rms to the
“pseudoexperimental data” obtained from the fit. Generate many
sets of pseudoexperimental data sets.

4 Fit the parameters to each item in the set.
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Advantages over previous approach

While using Monte-Carlo analysis:

We introduce no other assumptions about the properties of a model.

We obtain the Probability Density Function (PDF) for parameters
and observables.

We can easily inspect the correlations among parameters and
residuals.

We can generate different kinds of pseudoexperimental data to
determine which data can more- and which less-effectively constrain
e.g. the confidence intervals for parameters.
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Confidence intervals for parameters.
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In case of well-posed problems the confidence intervals obtained in “classical

calculations” are well reproduced by monte-carlo simulations. This is not true in

the case of ill-posed problems.
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Correlations between parameters.
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Estimating the predictive power (1)

The PDF distributions obtained from
Monte-Carlo analysis and correlated
sampling shows the great similarities.
Uncorrelated Sampling shows the re-
sults obtained from classical analysis
when only standard errors for the pa-
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PDF for observables

We wish to learn about the performance of the model when increasing the data
sample: example - increase the input from 13 to 21 levels ...

13 levels
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Comparison for levels lying above the Fermi levels.

All shown levels are included in fit in both calculations.
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PDF for observables

13 levels
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Left: Deep-lying states not included in the fit.
Right: Deep-lying states included in the fit.
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Estimating the predictive power (2)

13 levels
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The constraining effect on the levels not included in the fit.
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Conclusion

Conclusions:

Without analysis of statistical significance we risk making more
speculations than predictions.

Possibility to optimize the models from predictive power point of view.

The discrepiency between the predicted value and new experimental
results can indicate interesting physics.

The correlations cannot be neglected.

The things that were not discussed:

The techniques to deal with the singularity - SVD, regularization

Inclusion of prior information - bayesian approach

The alternative techniques of resampling/bootstrap/bootstraping
residuals

Physical implications and further applications.
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